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Abstract

Ambient exposure from residential proximity to applications of agricultural pesticides may contribute
to the risk of childhood acute lymphoblastic leukemia (ALL). Using residential histories collected
from the families of 213 ALL cases and 268 matched controls enrolled in the Northern California
Childhood Leukemia Study, the authors assessed residential proximity within a half-mile (804.5
meters) of pesticide applications by linking address histories with reports of agricultural pesticide
use. Proximity was ascertained during different time windows of exposure, including the first year
of life and the child’s lifetime through the date of diagnosis for cases or reference for controls.
Agricultural pesticides were categorized a priori into groups based on similarities in toxicological
effects, physicochemical properties, and target pests or uses. The effects of moderate and high
exposure for each group of pesticides were estimated using conditional logistic regression. Elevated
ALL risk was associated with lifetime moderate exposure, but not high exposure, to certain
physicochemical categories of pesticides, including organophosphates, cholorinated phenols, and
triazines, and with pesticides classified as insecticides or fumigants. A similar pattern was also
observed for several toxicological groups of pesticides. These findings suggest future directions for
the identification of specific pesticides that may play a role in the etiology of childhood leukemia.
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INTRODUCTION

Previous case-control studies have observed an increased risk of childhood leukemia associated
with household pesticide use and parental exposures to pesticides in occupational settings
(Alderton et al., 2006; Belson et al., 2007; Buffler et al., 2005; Daniels et al., 1997; Infante-
Rivard and Weichenthal, 2007; Infante-Rivard et al., 1999; Jurewicz and Hanke, 2006; Ma et
al., 2002; Meinert et al., 2000; Menegaux et al., 2006; Monge et al., 2007). Agricultural
pesticides applied near the home are another important source of exposure, particularly in rural
communities. Pesticide concentrations in ambient air have been demonstrated to be higher in
agricultural communities and near treated fields (Whitmore et al., 1994; Baker et al., 1996;
Woodrow et al., 1997; Teske et al., 2002; Weppner et al., 2006). In studies of house dust
measurements, concentrations of pesticide residues have been shown to be higher in residences
closest to an crops (Simcox et al., 1995; Lu et al., 2000; Fenske et al., 2002), in farm residences
compared to non-farm residences (Curwin etal., 2005; Obendorf et al., 2006), and in residences
with increasing acreage of crops within 750 meters of the home (Ward et al., 2006). The few
studies that have evaluated the association between proximity to agricultural pesticide use and
childhood leukemia observed limited evidence for an etiologic relationship (Reynolds et al.,
2005a; Reynolds et al., 2005b; Reynolds et al., 2002). These previous analyses only
characterized pesticide use around a single residence at the time of birth or diagnosis, and thus
did not account for multiple addresses during the subject’s lifetime. Furthermore, these studies
did not evaluate the effects of pesticide exposures during critical time periods such as gestation,
the first year of life, or the child’s lifetime from birth to the time of case diagnosis.

In this case-control study of childhood leukemia, we linked children’s residential histories with
available agricultural pesticide-use reporting data to characterize exposures to specific
pesticides and groupings of pesticides during specific time periods of interest. We then
examined whether residential proximity to agricultural applications of these agents is
associated with acute lymphoblastic leukemia (ALL), the most common subtype of this
childhood cancer.

MATERIALS AND METHODS

Study Population

The study population was derived from the first two phases of the Northern California
Childhood Leukemia Study, an ongoing case-control study; the design of the study is discussed
in detail elsewhere (Chang et al., 2006; Ma et al., 2004). Briefly, Phase | of the study consisted
of cases diagnosed between August 1995 and November 1999 in one of 17 counties in the
Greater San Francisco Bay Area. Cases in Phase |1 of the study were diagnosed between
December 1999 and June 2002 in the Phase | area or one of 18 additional counties in the
California Central Valley. In both phases, cases were ascertained within 72 hours of diagnosis.
For each Phase | case, one control subject with matching age, sex, Hispanic ethnicity, maternal
race, and maternal county of residence at the case’s time of birth was randomly selected from
birth certificates through the California Office of Vital Records. Phase Il cases were matched
to one or two controls using the same matching criteria except for county of residence.
Eligibility criteria for cases and controls included: 1) residence in the study area; 2) age less
than 15 at the time of diagnosis for cases or reference for controls; 3) no prior cancer diagnosis;
and 4) having an English- or Spanish-speaking parent. If the first choice control could not be
located or declined to participate, another birth certificate control was chosen. Overall, 382
cases and 482 controls were enrolled in Phases | and 11 of the study. These participating controls
represent 58% of the total number of 837 eligible potential control subjects and 84% of the
controls who were actually contacted (Chang et al., 2006).
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Extensive demographic and exposure information, including a complete residential history,
was collected from the parents or guardians (most often the mother) using a self-administered
questionnaire and a follow-up in-person interview. Addresses obtained from the residential
histories were geocoded using Arcinfo (ESRI, Redlands, California) geographic information
system (GIS) software and Dynamap/2000 (Geographic Data Technology, Inc., Lebanon, New
Hampshire) and NAVTEQ Standard (Navigational Technologies, Chicago, lllinois) street
geocoding databases.

Because comprehensive pesticide-use reporting was initiated in 1990, we restricted the study
population for this analysis to those cases and controls born in or after 1990. Of these, we
excluded 37 cases of acute myeloid leukemia (AML) and 2 cases with other rarer subtypes as
well as their matched controls. Of the remaining 271 ALL cases and their matched controls,
we only included subjects for whom geocodable address information was available for >90%
of the time period of interest. We further excluded incomplete matched sets without at least
one case and one control, resulting in a study population of 213 ALL cases and 268 matched
controls for the lifetime analyses and 191 ALL cases and 244 matched controls for the first
year of life analyses.

Exposure Assessment

Potential exposures to specific pesticides were ascertained by linking subjects’ residential
history information with available pesticide-use reports maintained by the California
Department of Pesticide Regulation (CDPR) since 1990 to track all statewide commercial
agricultural pesticide applications (California Department of Pesticide Regulation, 2000). Each
pesticide-use report provides detailed information on the name of the active ingredient in the
pesticide, the amount applied, the crop and acreage treated, and the date and location of the
application. Locations are reported according to the Public Land Survey System, a grid that
parcels land into sections with an area of approximately 1 mi? (2.6 km?). For this study, we
obtained pesticide-use report data from 1990 through 2002. We edited these data to remove
data entry errors such as those in reports including invalid sections of the Public Land Survey
System and to adjust the number of pounds of pesticides applied in records that were flagged
by CDPR as having extremely high application rates (pounds applied + acres treated) to the
number of pounds corresponding to the acres treated multiplied by the mean application rate
for that pesticide and crop combination.

Because over 600 different pesticide active ingredients were applied near residences during
the time period covered by this study, we selected 118 agents on the basis of frequent use (i.e.,
total crop acres treated and total pounds applied between 1990 and 2002) and available evidence
of toxicological effects (Table 1). These effects included probable or possible carcinogenicity
(IARC, 1991;National Toxicology Program, US Department of Health and Human Services,
2005;Office of Pesticide Programs, US Environmental Protection Agency, 2002),
developmental or reproductive toxicity (Office of Environmental Health Hazard Assessment,
California Environmental Protection Agency, 2008), and anti-cholinesterase activity based on
laboratory animal studies (California Department of Pesticide Regulation, 1997). In addition,
pesticides with suspected genotoxicity (i.e., directly damaging DNA) were identified on the
basis of at least 2 positive results in genetic toxicity assays (Gold and Zeiger, 1997;0Office of
Pesticide Programs, US Environmental Protection Agency, 2002) as well as suspected
endocrine disruptors (Colborn, et al. 1993;11linois Environmental Protection Agency,
1997;Keith, 1997). Based on these a priori assignments, we categorized each of these selected
pesticides into 6 toxicological classes. In addition, we categorized each pesticide into five
classes of target pests or uses (insecticides, herbicides, fungicides, plant growth regulators, and
fumigants) and 12 classes of physicochemical properties. Krieger’s Handbook of Pesticide
Toxicology (2001), the Compendium of Pesticide Common Names (Wood, 2008), and the
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Pesticide Action Network Pesticides Database (Kegley et al., 2008) were consulted to verify
the correct listing of each pesticide.

For each subjects’ time period of interest (e.g., lifetime or first year of life), we identified the
subjects’ residences during that period and created a %2-mi (804.5 m) radius buffer around each
residence and then intersected the buffers with the square-mile sections of the Public Land
Survey System. This ¥2-mi buffer radius was selected in order to represent the distance where
maximum exposure is likely to occur based on studies of pesticide drift (AgDRIFT Task Force,
1997; Frost and Ware, 1970; Ward et al., 2006; Woods et al., 2001). For each specific pesticide
or pesticide group, we aggregated the total pesticide pounds applied proportional to the
percentage area of each section within the buffer. Next, we summed the area-weighted pounds
for all residences during the time period of interest and divided by the buffer area (0.8 mi2 or
2.0 km?) to obtain the total pounds applied per square mile. Finally, we divided the total pounds
per square mile by the number of years in the exposure period of interest to estimate the average
annual area-weighted use density for each specific pesticide or pesticide group.

For each analysis of pesticide groups or individual agents, we defined a subject as unexposed
if their respective pesticide use density during the time period of interest was less than 1 Ib/
mi? for that group. For the remaining subjects, we derived two categories of pesticide exposure
based on the distribution of pesticide use density among control subjects with greater than 1
Ib/mi? of use density; these categories were defined as moderate (1t to 49t percentile) and
high (50t percentile and above) exposure. To maintain consistency, exposure categories for
each time period of interest are based on the distribution of the controls’ lifetime estimated
exposure. Where we observed suggestive associations, and where numbers of exposed cases
and controls permitted, we repeated the analysis using exposure categories based on the quartile
distribution among controls with greater than 1 Ib/mi? of use density.

Statistical Analysis

RESULTS

We employed conditional logistic regression to estimate the effects of residential proximity to
use of specific agricultural pesticides listed in Table 2. Effect estimates are reported as odds
ratios (ORs) and 95% confidence intervals (Cls). Due to the small numbers of cases and
controls exposed to specific pesticides and the possibility that related pesticides act by a
common mechanism, we also estimated effects for exposures to groups of agents by
physicochemical, toxicological, and target pest classes. Household income was included in all
models as a covariate on the basis of its observed negative associations with case status (Table
1) and pesticide exposure (results not shown). All statistical analyses were performed using
SAS software (SAS Institute, Inc., Cary, North Carolina).

We initially evaluated each agent and pesticide group in separate single-pesticide or single-
group models. Because pesticides are often applied in combination on similar crops and during
similar seasonal periods, we also explored the use of a single multiple-pesticide or multiple-
group model to account for the high degree of correlation observed between pesticide
exposures. We also used this approach to estimate the effects of each the physicochemical
classes of pesticides while simultaneously accounting for the other mutually exclusive classes
and a group of other pesticides not categorized into any of these classes.

Table 2 lists the distributions of the matching factors and annual household income. Because
subject eligibility for this analysis was limited to those born in or after 1990, all subjects were
less than ten years old, with over half of the subjects under the age of five. Males accounted

for 56% of the subjects, and 39% of the study subjects were Hispanic. The distribution of annual
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household income differed between case and control subjects with controls (38%) being more
likely than cases (24%) to be in the highest income group (>$75,000).

In analyses of specific pesticide active ingredients, we did not observe elevated risks for ALL
associated with moderate or high levels of exposure during the time windows of interest (results
not shown). For many of these agents, the small numbers of exposed cases and controls limited
our ability to detect associations and, in some instances, were not sufficient for analysis (i.e.,
exposed cases <4 or exposed controls <4). This paper presents effect estimates for moderate
and high exposure to classes of pesticides grouped by physicochemical, toxicological, and
target pest classes during two time periods: 1) subject’s lifetime between the date of birth and
the date of diagnosis or corresponding reference date and 2) subject’s first year of life.

Table 3 lists effect estimates from single-group logistic regression models for exposures to
pesticides grouped into five classes of target pests or uses over the course of the subjects’
lifetime and during the first year of life. Elevated risks for ALL were observed for moderate
lifetime exposure to fumigants (OR = 1.7; 95% ClI: 1.0, 3.1) or insecticides (OR = 1.5; 95%
Cl: 0.9, 2.4). For these target pest classes, however, the estimates for the high-exposure
categories did not appear to differ from the unexposed subjects. Effect estimates for exposure
during the first year of life did not suggest an increased ALL risk with high or moderate
exposure to any of these target pest or use groups.

Grouping pesticides by toxicological properties, we observed a consistent non-monotonic
exposure-response pattern for lifetime exposure to each of the pesticide classes, with elevated
risks in the moderate-exposure categories and shrinkage toward the null in the high-exposure
categories (table 4). This same pattern was observed for exposure during the first year of life
to probable or possible carcinogens, developmental or reproductive toxins, and cholinesterase
inhibitors, while odds ratios for suspected genotoxins or endocrine disruptors did not suggest
an elevation in risk for either moderate or high exposure.

Effect estimates from single-group models and a multiple-group model for lifetime exposure
to physicochemical classes of pesticides are listed in table 5. Similar to the results for
toxicological classes, elevated risks were observed in the moderate exposure groups for
chlorinated phenols (OR = 2.0; 95% CI: 1.0, 3.8), organophosphates (OR = 1.6; 95% CI: 1.0,
2.7), and triazines (OR =1.9; 95% CI: 1.0, 3.7), but not in the respective high-exposure groups.
Other notable but less precise results include an elevated risk for high exposure to azole
fungicides (OR =2.1; 95% CI: 0.8, 5.4) and a reduced risk for high exposure to benzimidazole
fungicides (OR = 0.5; 95% CI: 0.2, 1.0). Adjusting for exposure to other physicochemical
classes and other uncategorized pesticides in a multiple-group model resulted in a general loss
of precision. However, odds ratios remained elevated for high azole exposure (OR = 3.9; 95%
Cl: 1.0, 15.7) and moderate triazine exposure (OR = 4.1; 95% CI: 1.5, 11.1).

Exposures to physicochemical classes of pesticides during the first-year of life were also
evaluated using single-group models (results not shown). Point estimates for moderate (OR =
1.6; 95% CI: 0.9, 2.8) and high (OR = 0.8; 95% ClI: 0.4, 1.5) organophosphate exposure were
similar to those observed for lifetime exposure. This non-monotonic exposure response was
also observed for moderate (OR = 2.3; 95% ClI: 1.0, 5.3) and high (OR = 0.9; 95% ClI: 0.3, 2.5)
exposure to ureas during the first year of life. In contrast to elevated risks observed for moderate
lifetime exposure, we did not observe similar associations for moderate exposure to chlorinated
phenols (OR = 1.6; 95% CI: 0.7, 3.6) or triazines (OR = 0.8; 95% CI: 0.3, 1.6) during the first
year of life. Using a multiple-group model to adjust for exposures to other physicochemical
groups yielded imprecise effect estimates (results not shown), although we observed an
increased risk for moderate exposure to urea pesticides (OR = 3.6; 95% ClI: 1.0, 12.7).
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In general, effect estimates for exposure categories based on the quartile distribution among
controls with greater than 1 Ib/mi? of use density suggested a similar pattern to the respective
effect estimates for moderate or high categories of exposure, but with considerably less
precision (results not shown). For those pesticide categories that suggested an elevated risk
associated with moderate exposure and no elevated risk associated with high exposure (e.g.,
lifetime exposure to chlorinated phenols, organophosphates, or fumigants), effect estimates for
either or both the lower quartiles of exposure suggested an elevated risk while estimates for
both the upper quartiles suggested no increased risk.

DISCUSSION

We observed an increased risk of childhood ALL associated with moderate lifetime exposure
to several categories of agricultural pesticides, including the target-pest classes of insecticides
or fumigants and the toxicological classes of probable or possible carcinogens, developmental
or reproductive toxins, genotoxins, suspected endocrine disruptors and anti-cholinesterases.
Increased risks were not observed in the highest categories of exposure. A similar exposure-
response pattern was observed in single-class models of chlorinated phenols,
organophosphates, and triazines. Mutual adjustment for all physicochemical classes led to an
overall decrease in precision, but effect estimates tended to remain elevated in the moderate
exposure categories. In this model, only azoles suggested an increased risk at the highest level
of exposure.

Previous studies of ambient agricultural pesticide exposure and childhood leukemia have
observed few elevated risks associated with exposure. An ecologic study in California that
used pesticide-use reporting data to estimate pesticide use for census block groups at the time
of diagnosis found only an increased incidence of childhood leukemia in areas with the highest
use of the herbicide propargite (Reynolds et al., 2002). In a subsequent case-control study in
California that used pesticide-use reporting data to characterize exposure at the birth residence,
an increased risk of childhood leukemia was observed in the highest categories of exposure to
the thiocarbamate fungicide metam sodium and the organochlorine insecticide dicofol. Effect
estimates for exposures to pesticides listed as probable or possible carcinogens also suggested
an elevated risk (Reynolds et al., 2005b). A recent US ecological study of childhood cancer in
25 states (excluding California) found an increased risk of childhood leukemia in counties with
greater than 60% of acreage devoted to farming compared with counties with less than 20%
acreage devoted to farming (Carozza et al., 2008). However, this study relied only on crop
acreage and was unable to differentiate risks for specific pesticides.

The toxic effects of certain pesticides include oxidative stress, genotoxicity, endocrine
disruption, and cholinesterase inhibition, but little is known about what role these effects may
play in inducing ALL. There is limited toxicological evidence of a leukemogenic effect from
exposure to specific types of agricultural pesticides such as organophosphates (Perry and
Soreq, 2004; Williams et al., 2004). Previous toxicological studies observed a leukemogenic
effect from exposure to isofenphos, an organophosphate insecticide (Boros and Williams,
2001; Williams et al., 2004). By design, organophosphates and other anti-cholinesterase
compounds inhibit the ability of the enzymes acetylcholinesterase (AChE) and
butyrylcholinesterase (BuChE) to regulate acetylcholine, leading to an over-accumulation of
this neurotransmitter (Krieger, 2001). Emerging evidence suggests that change in AChE and
BuChE activity is associated with tumor development and may play a role in cell proliferation
and differentiation, although it is not clear whether this is a cause or consequence of neoplastic
processes (Vidal, 2005). Futhermore, cholinesterase inhibitors may induce amplification of the
ACHE and BuChE genes in developing blood cells, a phenomenon associated with the
development of leukemia (Lapidot-Lifson et al., 1989). However, it is unlikely that the
organophosphate exposures in this study occurred at levels sufficiently high to induce
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cholinesterase inhibition, especially when applications of these pesticides in agricultural
settings are designed to minimize potential exposure.

The non-monotonic exposure-response pattern observed for some pesticide groups in this study
may be due to biological effects related to endocrine disruption and/or competing risks. For
endocrine-disrupting chemicals, moderate exposure increases the receptor-mediated response,
but the response decreases with high exposure as receptors become saturated (Phillips et al.,
2008; Welshons et al., 2003). Within the context of competing risks, ALL is only one outcome
affected by exposure along a continuum ranging from subfertility to congenital malformations
to fetal loss. In this framework, an elevated risk of ALL would be observed at a moderate level
of exposure, but at higher levels of exposure, the observed risk would decrease as the risks of
more severe outcomes such as malformation or fetal death increase (Selevan and Lemasters,
1987). However, the lack of an observed association with high exposure may be due to artifacts
of the study design such as misclassification in the high exposure category or the use of overly
broad categories for grouping pesticides, especially by toxicological class. The classification
of pesticides as suspected genotoxins or endocrine disruptors is based on less evidence than in
the classification of probable carcinogens, developmental or reproductive toxins, and
cholinesterase inhibitors. Consequently, this lower specificity may bias effect estimates for
these categories of pesticides toward the null.

Among the unique features of this study was the use of detailed residential histories and existing
agricultural pesticide application data to improve the spatial and temporal resolution of
exposure assessment, focus on specific exposure time windows, and distinguish exposures
between specific pesticide compounds or categories. By integrating these data, we were able
to minimize potential exposure misclassification arising from using only a single address (e.g.,
at birth or diagnosis) to characterize exposure during the time period of interest. The average
number of residences between birth and the date of diagnosis or reference among subjects was
2.0 (range: 1-10) and did not appear to differ between cases (mean = 2.1) and controls (mean
=1.9). To minimize the potential for error when assigning locations to residential addresses,
we used multiple street geocoding databases. However, residential histories were self-reported
by mothers and maybe subject to recall error, especially among residentially mobile older
children whose earliest addresses would have preceded the interview by several years.
Although we were able to characterize residential mobility during children’s lifetimes, we did
not have sufficient prenatal address data available to assess agricultural pesticide exposures
during gestation which may be the most critical time period for exposure (Birnbaum and
Fenton, 2003). While we were able to estimate the effects of potential exposure to pesticides
grouped into categories of target pests, toxicity, and physicochemical properties, we lacked
sufficient power to do so for rarer exposures to specific pesticides.

Our exposure metric assumes that only pesticides applied in sections located within ¥%2-mi of
the residence of interest have the potential to drift to the residence and that all pesticides applied
in sections within ¥2-mi resulted in exposure at the residence. We did not include factors that
affect the fate and drift potential of pesticides in the environment, such as wind speed and
direction at the time of application, the mixing of solvents and adjuvants that may affect the
persistence and volatility of the active ingredient, and the application method. We also did not
utilize available crop maps that could have improved the spatial resolution of pesticide
applications beyond the one square-mile section. Future studies utilizing GIS and existing
environmental databases to estimate exposure to agricultural pesticides should incorporate land
use and meteorological data in the models (Nuckols et al., 2007; Rull and Ritz, 2003; Rull et
al., 2006; Ward et al., 2006; Ritz and Rull, 2008).

Proximity to treated crops has been associated with higher pesticide concentrations in ambient
air and house dust (Whitmore et al., 1994; Baker et al., 1996; Woodrow et al., 1997; Teske et
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al., 2002; Harnly, 2005; Weppner et al., 2006). Whether residential proximity is related to an
increased body burden of specific agricultural pesticides is not as clear. Urinary metabolite
levels were higher for people living in farm compared to non-farm residences for atrazine and
chlorpyrifos, but not glyphosate or metolachlor (Curwin, 2007). Among children living near
treated farmland, one study observed higher urinary concentrations of organophosphate
metabolites (Lu, 2000), but this was not observed in other studies (Fenske et al., 2002; Koch
etal., 2002; Royster, 2002). An analysis of urine collected from children of farm workers found
that organophosphate metabolites were moderately correlated with house dust levels of the
insecticide diazinon but not chlorpyrifos (Bradman et al., 2007). In other studies, children’s
urinary organophosphate metabolite levels were observed to be more strongly correlated with
hand wipe samples than house dust (Shalat et al., 2003; Weppner et al., 2006). A recent study
observed that urinary organophosphate metabolites levels from pregnant women in an
agricultural community were significantly higher than those from the general U.S. population.
Although diet was found to be the dominant source of organophosphate exposure, the authors
attributed this increase to non-dietary exposures from local agricultural pesticide use (McKone,
2007).

In summary, our study detected a modest increase in ALL risk with residential proximity to
moderate levels of agricultural use of several types of pesticides, but not at higher levels of
use. The observed consistency of this association across toxicological and physicochemical
classes warrants further exploration in future studies. These studies should have a larger pool
of cases and controls to allow for the evaluation of the effects of specific pesticides on ALL,
AML, and other leukemia subtypes. Pesticide exposure assessment should account for crop
locations and be further refined by including factors that influence the drift potential of
agricultural pesticides in the environment, and integrating pesticide exposure from other
sources such as diet and home use. In addition, prenatal residential histories should be collected
and geocoded in order to characterize exposure during the critical gestational period.
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Table 1

Physicochemical, target pest?, and toxicological®¢:de"8 classifications of 118
agricultural pesticides applied in California, 1990-2002
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Azoles
Fenbuconazole (F)Cf
Propiconazole (F)C'd
Terrazole (F)b
Triadimefon (F)c'd’f
Benzimidazoles
Benomyl (F)C'd'e’f
Thiabendazole (F)°d
Thiophanate-methyl (F)b'd
Chlorinated phenols
2'4-D and related (H)C'd’e'f
Diclofop-methyl (H)b'd
MCPA (H)®
MCPP (H)®
Dinitroanilines
Ethalfluralin (H)®
Norflurazon (H)®
Oryzalin (H)b
Pendimethalin (H)®'f
Trifluralin (H)®&f
N-methyl carbamates
Aldicarb (&9
Carbaryl (l)b,e,f,g
Carbofuran (l)e,g
Methiocarb (I)f'g
Methomyl (I)f'g
Mexacarbate (I)g
Oxamyl (I)g
Thiodicarb (1)?*9
Organochlorines
Dicofol (1)SF
Endosulfan (1)}
Lindane (I)C’f
Methoxychlor (I)]c
Organophosphates
Acephate (1)€Y
Azinphos-methyl (I)g
Bensulide (H)Y
Chlorpyrifos (l)e,f,g
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Diazinon (l)d,e,g

Dimethoate (I)C'd'g

Disulfoton (I)g

Ethephon (P)g

Fenamiphos (I)g

Fonofos (I)g

Malathion (1)¢€:f:9

Methamidophos (I)g

Methidathion (1)*'9

Methyl parathion (l)e,f,g

Mevinphos (l)e,g

Naled (1)&:9

Oxydemeton-methyl (1)3-€/9

Parathion (I)C'f'g

Phorate (I)QI

Phosmet (I)C'g

Profenofos (1)9

Trichlorfon (I)b'g
Pyrethroids

Bifenthrin (1)¢:f

Cypermethrin (1)¢f
Esfenvalerate (I)f
Lambda-cyhalothrin (1)f
Permethrin (I)C'f
Pyrethrins (I)C
Resmethrin (I)d
Tau-fluvalinate (1)
Substituted benzenes

Chlorothalonil (F)P

pCNB ()%
Thiocarbamates

Butylate (H).g

Cycloate (H)d'g

EPTC (H)%9

Mancozeb (F)b'd'f

Maneb (F)P:d:f

Metam-sodium (F, H, FUM)b'd'e

Molinate (H)C'd

Pebulate (H) g

Thiobencarb (H) 9

Thiram (F)&f
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Zineb (F)0f
Ziram (F)C*d'e’f

Triazines

Atrazine (H)C'e'f
Cyanazine (H)®0"f

Prometryn (H)d

Pymetrozine (I)b

Simazine (H)C’d'f
Ureas

Diuron (H)b'd

Linuron (H)C'd’f
Other pesticides
(Not grouped by physicochemical class)

1'3-dichloropropene (N, FUM)?€

Alachlor (H) P:def

Amitraz (I)C’d

Benefin (H)c

Bromacil (H)C
Bromoxynil octanoate (H)d
Cacodylic acid (H)b
Captan (F)b’e
Chloropicrin (N, FUM)e
Chlorthal-dimethyl (H)¢
Daminozide (P)b
Dicamba (H)d
Dioctyl phthalate (A)2:%:f
Diquat dibromide (H)®
Fenarimol (F)f

Fenbutatin-oxide (I)d

Fluazifop-butyl (H)%

Glyphosate (H)

Hexythiazox (I)C

Hydrogen cyanamide (H, P)C
Iprodione (F)b'f

Methyl bromide (F, H, I, FUM)%€
Metolachlor (H)c'f

Metribuzin (H)d’f

MSMA (H)¢

Myclobutanil (F)d

Ortho-phenylphenol (M)b’d'e

Oxadiazon (H)b’d

Oxyfluorfen (H)C

Environ Res. Author manuscript; available in PMC 2010 October 1.

Page 15



1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duosnue Joyiny vd-HIN

Rull et al. Page 16

Oxythioquinox (F, I, FUM)b'd
Paraquat dichloride (H)e
Piperonyl butoxide (S)¢
Propanil (H)c

Propargite (I)b'd
Propyzamide (H)b
5'5’S-tributyl ()9
Sodium cacodylate (H)b
Triforine (F)ch

Vinclozolin (F)C’d'f

aTarget pest classifications: A, adjuvant; FUM, fumigant; F, fungicide; H, herbicide; I, insecticide; M, microbiocide; N, nematocide; P, plant growth
regulator; S, synergist.

bProbable carcinogen.
C, . .
Possible carcinogen.
d . .
Developmental or reproductive toxin.
e .
Suspected genotoxin.
f -
Suspected endocrine disruptor.

gChoIinesterase inhibitor.
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Characteristics of childhood acute lymphoblastic leukemia (ALL) cases and
matched controls, the Northern California Childhood Leukemia Study, California,

1990-2002
Cases Controls

Characteristics No. % No. %
Agea
<3 70 33 90 34
3-4 81 38 103 38
5-10 62 29 75 28
Sex?
Male 120 56 148 55
Female 93 44 120 45
Race/ethnicitya
Hispanic 83 39 104 39
Non-Hispanic White 94 44 115 43
Non-Hispanic Black 8 4 10 4
Asian or other 28 13 39 14
Annual household income
<$15,000 21 10 22 8
$15,000-29,999 43 20 35 13
$30,000-44,999 33 15 37 14
$45,000-59,999 37 17 29 11
$60,000-74,999 23 11 33 12
$75,000+ 51 24 103 38
Refused or unknown 5 2 9 3
Total 213 268

a . -
Matching criterion.
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